Extensions 1→N→G→Q→1 with N=C22 and Q=D24

Direct product G=N×Q with N=C22 and Q=D24
dρLabelID
C22×D2496C2^2xD24192,1299

Semidirect products G=N:Q with N=C22 and Q=D24
extensionφ:Q→Aut NdρLabelID
C22⋊D24 = A4⋊D8φ: D24/C8S3 ⊆ Aut C22246+C2^2:D24192,961
C222D24 = C2429D4φ: D24/C24C2 ⊆ Aut C2296C2^2:2D24192,674
C223D24 = D1213D4φ: D24/D12C2 ⊆ Aut C2248C2^2:3D24192,291

Non-split extensions G=N.Q with N=C22 and Q=D24
extensionφ:Q→Aut NdρLabelID
C22.1D24 = D487C2φ: D24/C24C2 ⊆ Aut C22962C2^2.1D24192,463
C22.2D24 = C22.2D24φ: D24/D12C2 ⊆ Aut C2248C2^2.2D24192,29
C22.3D24 = D242C4φ: D24/D12C2 ⊆ Aut C22484C2^2.3D24192,77
C22.4D24 = C22.D24φ: D24/D12C2 ⊆ Aut C2296C2^2.4D24192,295
C22.5D24 = C16⋊D6φ: D24/D12C2 ⊆ Aut C22484+C2^2.5D24192,467
C22.6D24 = C16.D6φ: D24/D12C2 ⊆ Aut C22964-C2^2.6D24192,468
C22.7D24 = C2.Dic24central extension (φ=1)192C2^2.7D24192,62
C22.8D24 = C485C4central extension (φ=1)192C2^2.8D24192,63
C22.9D24 = C486C4central extension (φ=1)192C2^2.9D24192,64
C22.10D24 = C2.D48central extension (φ=1)96C2^2.10D24192,68
C22.11D24 = C12.9C42central extension (φ=1)192C2^2.11D24192,110
C22.12D24 = C2×D48central extension (φ=1)96C2^2.12D24192,461
C22.13D24 = C2×C48⋊C2central extension (φ=1)96C2^2.13D24192,462
C22.14D24 = C2×Dic24central extension (φ=1)192C2^2.14D24192,464
C22.15D24 = C2×C241C4central extension (φ=1)192C2^2.15D24192,664
C22.16D24 = C2×C2.D24central extension (φ=1)96C2^2.16D24192,671

׿
×
𝔽